LACTONIC LIGNANS FROM CNICUS BENEDICTUS

Maurice Vanhaelen and Renée Vanhaelen-Fastré

Service de Pharmacognosie, Institut de Pharmacie, Université Libre de Bruxelles. Campus Plaine, B-205/4, Boulevard du Triomphe, B-1050 Bruxelles, Belgique

(Received 19 May 1975)

Key Word Index—*Cnicus benedictus*, Compositae, 2,3-dibenzylbutyrolactone lignans, nortracheloside, 2-acetylnortracheloside; trachelogenin; arctigenin

Plant. Cnicus benedictus L. identified at the Botanical Institute of the Free University of Brussels. Source. Jardin Expérimental J. Massart (Brussels). Previous work. Arctin in fruit; none in other parts of the herb [1].

Present work. The dried and powdered herb (3.6 kg) was extracted with CHCl₃. Oils, waxes and chlorophyls were removed by eluting the extract on cellulose with H₂O-MeOH (4:1). After evaporation under reduced pressure, the H₂O-MeOH solution was purified by multiple dry-column chromatography on S₁ gel with CHCl₃-Me₂CO (4:3), to give two fractions: I, crude cnicin; and II, analytical TLC of II showed a complex mixture with 5 major spots detected by I₂/CHCl₃. Repetitive PLC on Si gel with CCl₄-Me₂CO (4:1 and 7:3) led to isolation of arctigenin (A; 15 mg), trachelogenin (B; 90 mg), nortracheloside (D₁; 60 mg), 2-acetylnortracheloside (D₂; 10 mg) and C which was earlier identified as salonitenolide [2].

Compounds A, B, D_1 and D_2 were characterized from their spectral (UV, IR, PMR, MS) properties, by chemical methods (methylation, acetylation, alkaline oxidation) and, for compounds A and B, direct comparison with authentic samples. As previously reported [1], no arctin was detected

Examination of D_2 . The compound D_2 has not been reported previously. MS (probe, direct inlet, 180°) 70 eV: 578 M⁺ [5] ($C_{28}H_{34}O_{13}$), 536·1986 (M⁺ -42. Calc mass for $C_{26}H_{32}O_{12}$: 536·1891), 518·1863 (M⁺ -42; 18. Calc mass for $C_{26}H_{30}O_{11}$: 518·1787). 298·1194 (M⁺ -42; 30; 30; glucosyl. Calc mass for $C_{18}H_{18}O_4$: 298·1203) and 137·0599 (100) (Calc mass for $C_{8}H_{9}O_2$: 137·0602).

100 Mc PMR spectrum of D_2 in CDCl₃ is comparable to that of D_1 , but a singlet was observed at δ 2·02 (3 H). The IR spectrum of D_2 in CHCl₃

(1740 cm⁻¹>C=O, in addition to 1780 cm⁻¹ γ -lactone>C=O) also agreed with the presence of an aliphatic acetyl.

	R	R'	<u>R"</u>
(A) Arctigenin	н	н	Me
(B) Trachelogenin	ОН	Н	Me
(D ₁) Nortracheloside	он	Glc	н
(D ₂) 2 - Acetylnortracheloside	OAc	Glc	н

Treatment of D_2 with saturated Na₂CO₃ in MeOH gave D_1 ; hydrolysis of both compounds, D_1 and D_2 , with $3N ext{ H}_2SO_4$ afforded 2 non-identical genins and glucose identified by PC and GLC after silylation. Treatment of the genins with POCl₃ led for the genin from D_1 (nortrachelogenin) to a dehydration product with rupture at C-3/C-5 of the lignan (220 M⁺, $C_{12}H_{12}O_4$). The genin from D_2 was not transformed under these conditions. These results unequivocally confirmed the position of the acetyl at C-2 of lignan D_2 .

Studies are in progress to evaluate further the antibacterial and antitumoral potential of such compounds in *Cnicus benedictus*.

Acknowledgement—The authors express their sincere thanks to Dr S Nishibe for authentic samples of arctigenin and trachelogenin, and to Prof Dr F Bohlmann for his kind assistance

REFERENCES

- Hansel, R., Schulz, H. and Leuckert, Ch. (1964) Z. Naturforsch. B 19, 727
- 2 Vanhaelen-Fastré, R and Vanhaelen, M. (1974) Planta Med. 26, 375